If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6s^2+8s+1=0
a = 6; b = 8; c = +1;
Δ = b2-4ac
Δ = 82-4·6·1
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{10}}{2*6}=\frac{-8-2\sqrt{10}}{12} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{10}}{2*6}=\frac{-8+2\sqrt{10}}{12} $
| (6x+12)=(3x-12)+78 | | 3x+21/2=2x-41/2 | | x4+11x3+46x2+88x+64=0 | | z-4/3=-7/12 | | −5x+20=−30 | | -6/5x+1=13 | | -5(y+2)+4(3y-3)=6(y-5)+8 | | -6(1-7x)+8=-30+10x | | 5/25=x/60 | | 4u-9+3(2u+3)=-2(u+3) | | 7(n-4)-(3-6n)=12n | | -5(-4u+5)-6u=4(u-7)-5 | | -5(1-x)+x=-(9-4x)+9 | | 4a-3/5=3a+1/4 | | 6(w+2)=-2(7w-9)+8w | | 9+2(3w-6)=-3(4w-1)+4w | | 12a-10=64 | | -0.8y=-6.4 | | -7u+8=4(u-9) | | 5-(2x-6)=29 | | 2x-1=3x-2x | | 8/12=15/x | | -9(x-2)=6x+48 | | 12x2-7x=0 | | 12/x=5/1 | | 3y+25=7(y-1) | | 6-2x+3x²=0 | | X-(.5x)=18 | | 2/8=x/7 | | -25=5w+5(w-7) | | -12-4(-2x)=4 | | 2=2(u-2)-4u |